Modulation of skeletal muscle sodium channels by human myotonin protein kinase.

نویسندگان

  • J P Mounsey
  • P Xu
  • J E John
  • L T Horne
  • J Gilbert
  • A D Roses
  • J R Moorman
چکیده

In myotonic muscular dystrophy, abnormal muscle Na currents underlie myotonic discharges. Since the myotonic muscular dystrophy gene encodes a product, human myotonin protein kinase, with structural similarity to protein kinases, we tested the idea that human myotonin protein kinase modulates skeletal muscle Na channels. Coexpression of human myotonin protein kinase with rat skeletal muscle Na channels in Xenopus oocytes reduced the amplitude of Na currents and accelerated current decay. The effect required the presence of a potential phosphorylation site in the inactivation mechanism of the channel. The mutation responsible for human disease, trinucleotide repeats in the 3' untranslated region, did not prevent the effect. The consequence of an abnormal amount of the kinase would be altered muscle cell excitability, consistent with the clinical finding of myotonia in myotonic dystrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase.

Myotonic dystrophy, a progressive autosomal dominant disorder, is associated with an expansion of a CTG repeat tract located in the 3'-untranslated region of a serine/threonine protein kinase, DMPK. DMPK modulates skeletal muscle Na channels in vitro, and thus we hypothesized that mice deficient in DMPK would have altered muscle Na channel gating. We measured macroscopic and single channel Na c...

متن کامل

Modulation of skeletal muscle sodium channels in a satellite cell line by protein kinase C.

Adult vertebrate skeletal muscle sodium channels are responsible for the spread of excitation from the end-plate through the muscle membrane and transverse tubular system that ultimately leads to contraction. These channels can be distinguished from other sodium channels by their sensitivity to both mu-conotoxin and TTX. The mouse satellite muscle cell line MM14 expresses only TTX- and mu-conot...

متن کامل

Abnormal Na channel gating in murine cardiac myocytes deficient in myotonic dystrophy protein kinase.

DMPK is a serine/threonine kinase implicated in the human disease myotonic muscular dystrophy (DM). Skeletal muscle Na channels exhibit late reopenings in Dmpk-deficient mice and peak current density is reduced, implicating DMPK in regulation of membrane excitability. Since complete heart block and sudden cardiac death occur in the disease, we tested the hypothesis that cardiac Na channels also...

متن کامل

Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy.

Abnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine line carrying approximately 25 extra co...

متن کامل

Skeletal muscle Na currents in mice heterozygous for Six5 deficiency.

Myotonic dystrophy results from a trinucleotide repeat expansion between the myotonic dystrophy protein kinase gene (Dmpk), which encodes a serine-threonine protein kinase, and the Six5 gene, which encodes a homeodomain protein. The disease is characterized by late bursts of skeletal muscle Na channel openings, and this is recapitulated in Dmpk -/- and Dmpk +/- murine skeletal muscle. To test w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 1995